
Taking Network Management into the 21st Century.

Rob Shakir (rjs@jive.com)
IPArch/NetDevOps - Jive Communications, Inc. Paris, France - January 2016

mailto:rjs@jive.com

HELLO!

Rob Shakir
IP Architect / “NetDevOps” @

Strategy and
development
relating to

‘The Network’

#1: STARTUP

+ +

Servers, network, management infrastructure, billing...

#2: NSP

+

Network infrastructure, and management tooling.

#3: GLOBAL TELCO

Network infrastructure - but lots of it!

#4: INCUMBENT TELCO

A huge array of different infrastructure and technologies.

CURRENTLY: CLOUD UC PROVIDER

+

The ‘full network stack’

HOT TOPIC:
MANAGING THE NETWORK

- Zero time to plan changes -
self-service infrastructure.

- Change is very frequent - can
be reactive (to failures or load
characteristics)

- 30-90+ days to plan changes -
physical build required.

- Change very infrequent -
requires on-site changes or
reprovisioning.

Historically Today

MANAGING A NETWORK SERVICE:
#1: PROVISIONING

- Typical process thought of when considering ‘management’
- Taking details of a service - and instantiating configuration on devices
- Requires read/write interfaces - to validate current config and add new

MANAGING A NETWORK SERVICE:
#2: MONITORING

- Retrieval of events and metrics that are associated with a configured entity
- Alarming - determining that an issue (e.g., failure) has occurred
- Metrics - used to bill, analyse quality of experience and capacity planning.

MANAGING A NETWORK SERVICE:
#3: RESPONDING TO EVENTS

- Reacting to events that occur within the network - and determining remedial
measures

- Key element of the management of a network - actually fixes problems!

NMS

TODAY’S NETWORK MANAGEMENT
ARCHITECTURE

SYSLOGSNMP CLI

HUMAN INTERPRETATION

COMPETING APPROACHES!

222

3

1

FOCUSING DOWN ON SNMP + IETF MIBS
rjs@mgmt:~$ snmpwalk -v2c -c COMMUNITY ROUTER PATH
iso.3.6.1.2.1.31.1.1.1.1.1 = STRING: "Gi0/0/0"
iso.3.6.1.2.1.31.1.1.1.1.2 = STRING: "Gi0/0/1"
iso.3.6.1.2.1.31.1.1.1.1.3 = STRING: "Gi0/0/2"
iso.3.6.1.2.1.31.1.1.1.1.4 = STRING: "Gi0/0/3"
iso.3.6.1.2.1.31.1.1.1.1.5 = STRING: "Gi0"
iso.3.6.1.2.1.31.1.1.1.1.6 = STRING: "Vo0"
iso.3.6.1.2.1.31.1.1.1.1.7 = STRING: "Nu0"
iso.3.6.1.2.1.31.1.1.1.1.8 = STRING: "Lo0"
iso.3.6.1.2.1.31.1.1.1.1.9 = STRING: "Lo1"
iso.3.6.1.2.1.31.1.1.1.1.10 = STRING: "Gi0/0/3.4"
iso.3.6.1.2.1.31.1.1.1.1.11 = STRING: "Gi0/0/3.10"

Typed data
definitions

Data organised
into tables -
each with
indexes

Queries over UDP
with get and bulk

get operations

ifIndex OBJECT-TYPE
 SYNTAX InterfaceIndex
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A unique value, greater than zero, for each interface. It
 is recommended that values are assigned contiguously
 starting from 1. The value for each interface sub-layer
 must remain constant at least from one re-initialization of
 the entity's network management system to the next re-
 initialization."
 ::= { ifEntry 1 }

Strict table
structure

defined by
indexes

Schema defined
in ASN.1

Access (e.g., RO,
RW) defined per

element

PROTOCOL SUCCESS:
STRUCTURE ISSUES FOR DEVICES

1 2 3 4 2 1 4 3

Strict data structure defined - re-ordering can be computationally expensive.
Polling a device ‘wrong’ can result in a loss of other functions (e.g., routing)!

- Gets worse with random access - bulk get vs. get enforced.
- Could have been predicted? Internal systems databases known prior to MIB

development?

Poll
mplsTunnelResourceMaxRate

PROTOCOL SUCCESS:
STRUCTURE ISSUES FOR OPERATORS

Poll
mplsTunnelName

Poll
mplsTunnelInstanceIndex

Poll
mplsTunnelResourcePointer

Find bandwidth
reserved for
MPLS tunnel

- Data structure not intuitive, and not optimised for operational use cases.
- Competes with ‘sh mpls traffic-eng tunnel Tun10 | i Bandwidth Requested’

LESSON I:
KNOW YOUR USERS

Scale

Purpose

Scale

Purpose

Sufficient scale to manage
all device data

Scale reduced due
to device impact

Reduced
functionality
due to user
complexity

- Two sets of users: device implementors, and operators.
- Neither use case well catered for - drives use of non-standard MIBs or other

interfaces.

Intention Reality

PROTOCOL SUCCESS:
THINKING ABOUT USER FLEXIBILITY

Duplex

Speed

Interface (IF-MIB)

Duplex

Speed

Colour

Interface (VENDOR-IF-
MIB)

- Structured tables, without ability to add proprietary (or pre-standard) features.
- How should user extend these?

- Specific ‘extension’ MIBs?
- Fork MIBs?

- Both negatively impact usability - split per-vendor, or split logical constructs.

LESSON II:
EXTENSIBILITY IS KEY

Scale

Purpose

Sufficient functionality to
be a single management

interface Scale

Reduced
functionality

due to
inability to

extend
concepts

- Features are always going to evolve - extensibility is a MUST!
- Where alternate interfaces allow more usable interaction - SNMP lost.

Intention Reality

HOW DOES SNMP’S
RFC 5218 RESULT SHEET LOOK?

Meeting a real need
Improves network manageability

Incremental deployability
Co-exists with other management

Open code availability
Open source daemons and pollers

Open maintenance
Open IETF standards process

Good technical design
Lack of flexibility causes scale issues

Extensibility
Requires opting-out of the standards

Scalability
Demonstrated break points -

disincentive to deploy

Widely deployed - but not wildly successful.

Almost every network operator uses SNMP - a success!
But… it is rarely used alone, and almost never using the ‘standard’

management modules
Has it survived simply due to lack of competition?

NMS

WHERE HAVE WE ENDED UP?

SNMP WITH ENTERPRISE MIB CLI
GENERATED

CONFIG
GENERATED

CONFIG
GENERATED

CONFIG

HUMAN INTERPRETATION

SYSLOG

NMS

WHAT DOES THE
NMS ACTUALLY DO TODAY?

- Usually divided into ‘Monitoring’ and
‘Configuration’ elements.

- Limited processing, and prioritisation of
alarms and metrics.

- Config change automation - glues
vendor specific CLI together.

- We’re stuck with networks that are human managed.

THE COST OF FAILURE

NMSes typically end up complex, and fragile:

- Per-vendor integrations: high cost of
change, and many ‘specials’.

- Fragile: often end up relying on screen-
scrapes and non-defined APIs.

- Imperative: ‘turn-by-turn’ understanding
of the network required.

- Esoteric: deal with the nuts-and-bolts, not
the service or application.

NMS

WHERE WOULD WE LIKE TO BE?

Vendor A Vendor B

Metrics

EventsIntended state

Service metricsService changes

Programmatic consumers
dealing with abstracted

services that the network
provides

Normalised APIs across
vendors for streamed

telemetry and declaration
of intended state

AUTOMATED NETWORK MANAGEMENT:
THE TARGET (I)

External code can
request a new service
- e.g., network
connectivity to a new
Docker container that
has been turned up.

1

AUTOMATED NETWORK MANAGEMENT:
THE TARGET (II)

Network management can
deal with abstract request.

Requires: new VRF plus
virtual interface on server.

2

Config for
these

elements
pushed to

the network -
one data
schema!

3

Private
networkOVS

AUTOMATED NETWORK MANAGEMENT:
THE TARGET (III)

Statistics from how the
service runs can be

related simply back to the
service that the external

code requested.
(e.g., bandwidth usage to

the new container)

4
Streamed statistics -
bandwidth utilisation,

CRC errors etc.

AUTOMATED NETWORK MANAGEMENT:
THE TARGET (IV)

External code can close the
loop and make changes to the
abstracted service - through a

single declarative API.

Close the loop - allow the
network to run without human

decision makers!

AIMS FOR ‘EVOLVED’
NETWORK MANAGEMENT

- Single normalised data model
encompassing configuration and state.

- Declarative API to change state - where
we want to be, not how to get there.

- Designed to be interacted with
programmatically - optimise for code,
not humans.

- Real-time streaming API for events and
state updates.

HOW MIGHT WE GET THERE?
OPENCONFIG - START WITH THE USERS.

OpenConfig-defined data
schema

- Defining data models (schemas) for
representing config and state

- Network entities (e.g., interfaces) and
applications (e.g., BGP)

- Open source (Apache license)
- Only network operators

YANG:
AN IETF DATA MODELLING LANGUAGE

module “example-bgp” {
 …
 container bgp {
 leaf as-number { type uint32; }
 list neighbors {
 key “neighbor-address”;
 leaf neighbor-address { type ip-address; }
 leaf session-state {
 config false;
 type bgpstate; }
 }
}

Schema definition language divided into
logical modules

Defines a tree structure where ‘containers’
and ‘lists’ encapsulate data items

Data items (leaves) are typed, and can
contain data such as default values

Used to model both ‘configuration’
(writeable) and ‘state’ (read-only) data

YANG: THINKING ABOUT EXTENSIBILITY

deviation

Indicate a subset of the model is
not supported, or refine the values

specified (e.g., int range 0...3)

if-feature

Mark a subset of the tree as
being dependent upon a

certain ‘feature flag’

augment

Add new elements to the
existing tree without

changing existing content.

OPENCONFIG MODELLING APPROACH

User-driven ‘operationally required’ features
openconfig-bgp

Vendor
deviations

alu-sros-ocbgp

Extension
features
bgp-rpki

Vendor-specific
features
cisco-bgp

Ideally zero - but
allows vendors with
incompatibilities to
implement module.

Reduces over time
due to customer

demand?

New features, or those that are
not widely used by the

OpenConfig group

Room for vendor-specific widgets,
or pre-standard features

Core features chosen based on widespread use amongst operators involved in
OpenConfig - wide range of network deployments covered!

THINKING ABOUT USE CASES:
OPERATIONAL STATE

Configuration
(Intended state)

Applied configuration
(applied state) Derived state

Max prefix
exceeded

Increase
number of
prefixes

Validate
change applied

2

1
3

Common workflow: relate the running state of the network to the intended state, and ensure
that changes in intention are applied. Models structured to consider such use cases.

container prefix-limit {
container config {

leaf max-prefix { … };
}
container state {

config false;
leaf max-prefix { … };
leaf recvd-prefixes { … };

}
}

OPENCONFIG: THINKING ABOUT
THE WHOLE SYSTEM

Network Operators

Develop initial proposed
model - considering

operational use cases and
NMS implementation.

Equipment Vendors

Consider mapping to
internal system database

and consider
implementation

characteristics on-device.

Propose

Iterate

Ensure that both
sets of users are

considered prior to
standardisation!

OPEN SOURCE:
THINKING ABOUT MAKING THINGS USABLE

Generate language
bindings

- Make libraries
available that work
for developers

- Java, Go, Python...

Programmatically
create instance

- Simplify way that these
instances can be created
- think about users.

Serialise
instance

- Agree on encodings that
make sense

- Work to get these
implemented!

IMPROVING SCALABILITY THROUGH
STREAMING TELEMETRY

- Expensive whole-table polls
- Filtering required
- Query sent each polling

interval

SNMP Statistics Approach: OpenConfig + Streaming Telemetry:

Per-interval polling Subscription at
startup Streamed stats

- Adopt publish/subscribe
- Subscriptions on a per-state path
- Events directly relatable to

configured entities

CAN WE ITERATE BEFORE
WE CARVE OUT THE STANDARDS?

Idea

1-3+
years!

Operational
Experience

- Long time to standardise -
without wide ops experience

- Nothing is perfect first time -
long iteration cycle.

OpenConfig

Inform and
iterate

Implement
and test

Implement
and test

- Improve the chances of success by testing in
the real-world before standardisation

- Intention is to quickly capture issues
preventing ‘basic’ success!

- Cisco, Juniper, Arista, Google, Jive already
implementing!

COMPARING OC/YANG TO SNMP - RFC 5218

Meeting a real need
Improves network manageability

Incremental deployability
Co-exists with other management

Open code availability
Specific efforts to ensure tooling is

available

Open maintenance
Open IETF standards process

Good technical design
Address the flexibility issues of SNMP

Extensibility
Standard modules designed to be

extended

Scalability
Being tested through implementations

early and often

Open questions
- Tooling that grows around the OpenConfig effort - what do

operators that don’t write code do?
- Feature diversity - what happens to those that have huge feature

diversity - particularly does the approach continue to work for
Enterprise?

Open licensing

Zero patents, no IPR claims, Apache
licensed

By no means a “done deal” - but significant focus on improving what’s there today!

CONCLUDING THOUGHTS...

New technologies/protocols will always have an adoption curve…
Some organisations have a huge cost of change from their existing systems - should

not prevent us “trying something better”.

Hype vs. demonstrated needs…
(Hopefully) Have not mentioned ‘SDN’ - proposal here is to adopt concepts from other

infrastructure management into networks - with real benefits.

It’s easy to see problems in the rear view mirror…
OpenConfig/YANG will not be perfect first time - there is a real need for networks to

be treated like software - if we don’t get it right first time, bump version and refactor!

THANKS! QUESTIONS?

E-Mail: rjs@rob.sh or rjs@jive.com
Twitter: @robshakir

mailto:rjs@rob.sh
mailto:rjs@jive.com

ADDITIONAL RESOURCES
- OpenConfig: www.openconfig.net

- OpenConfig Models: https://github.com/openconfig/public

- Go bindings: https://github.com/openconfig/goyang

- Python bindings: https://github.com/robshakir/pyangbind

- Google on OpenConfig: https://www.youtube.com/watch?v=_XBwRydxj1M

- Tail-f YANG Tutorials: http://www.tail-f.com/education/

- OpenConfig on Juniper: https://vimeo.com/139447948

- OpenConfig on Cisco: https://vimeo.com/146123659

- OpenConfig on Arista: https://eos.arista.com/openconfig-the-emerging-industry-standard-api-for-
network-elements/

- Network Field Day OpenConfig round-table: http://techfieldday.com/appearance/anees-shaikh-
presents-open-network-management/

http://www.openconfig.net
https://github.com/openconfig/public
https://github.com/openconfig/goyang
https://github.com/robshakir/pyangbind
https://www.youtube.com/watch?v=_XBwRydxj1M
http://www.tail-f.com/education/
https://vimeo.com/139447948
https://vimeo.com/146123659
https://eos.arista.com/openconfig-the-emerging-industry-standard-api-for-network-elements/
https://eos.arista.com/openconfig-the-emerging-industry-standard-api-for-network-elements/
https://eos.arista.com/openconfig-the-emerging-industry-standard-api-for-network-elements/
http://techfieldday.com/appearance/anees-shaikh-presents-open-network-management/
http://techfieldday.com/appearance/anees-shaikh-presents-open-network-management/
http://techfieldday.com/appearance/anees-shaikh-presents-open-network-management/

