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Background.

● Since ~Summer 2014, OpenConfig has:
○ Focused on covering a “operationally viable” subset of the configuration and state of 

routing, switching and optical devices.
○ Published an ever-growing set of YANG models.
○ Focused on implementations by network equipment vendors, after reviews with network 

operators.

● Asked to give some feedback on our experience.
○ Not going to talk about YANG language features here - have raised specific concerns.
○ DISCLAIMER: We are not asking for the IETF to do anything about our observations - 

we’re just sharing knowledge.



Some more details: what has OpenConfig built?

● 72 YANG modules and supporting developer infrastructure.
○ Coverage for L2 switches, IP routers, IP/MPLS LER/LSRs.
○ Transport devices - amplifier, ROADM (“wavelength router”), terminal devices.

● YANG tooling.
○ A YANG compiler (goyang)
○ Python & Go language binding generators with validation backends.
○ Plugins for documentation, path extraction, generating alternate schema representations.

● Configuration and state manipulation protocol, and tooling.
○ gNMI specification and proto.
○ Reference collector implementation.

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md
https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi.proto
https://github.com/openconfig/reference/tree/master/telemetry


Some more details: implementations.

● A number of major vendors have shipping code that supports OpenConfig 
models.
○ We directly interact with >5 vendors, based on OpenConfig member customer demand 

on issues mapping to their underlying schemas.
○ Grateful to these folks for their input - launch-and-iterate approach to getting usable 

models.

● Models are driving multiple operator’s NMS stacks.
○ A standard representation for telemetry variables across multiple platforms. 
○ Vendor neutral configuration specification language.

Per feedback at IETF92, aiming to inform discussion with running code.
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The OpenConfig Model Landscape (II)
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Some key observations.

● Folks don’t care that you’re using YANG…
○ People interacting with network devices want to do something, not care about the 

modelling language.
○ Our philosophy is to try and ensure that we don’t have to teach people about YANG, 

unless they’re actually writing schema modules.

● Consistency is key…
○ If you have to explain that “LLDP works like this, but LACP works like this”, then you’ve 

already failed.
○ Do not want to trade the complexity of heterogeneous vendor configuration formats for 

that of inconsistent data models.  
○ We’ll use the word consistent a lot!



Everything is State.

● We can’t just design models based around configuration data.
○ How and where to model operational variables is critical.
○ We think of things in terms of intended, applied and derived state.
○ Still no consensus around opstate in the IETF (we tried…).

● Consistency around where a user finds state variables is important.
○ If this needs explaining per model, we’ve failed.

● Consideration of telemetry is needed throughout models.
○ e.g., how do we send an efficient delete update for a keyless list?
○ Are there ways we can design the models to allow for related variables to be transmitted 

together?
○ How do we annotate the schema to indicate different data types?



Most difficult models: unifying other models.

● Case in point: openconfig-network-instance.
○ Model that unifies a number of entities within OpenConfig.
○ Protocols, AFTs, tables (RIBs).
○ Allows multi-tenancy of a network element (VRFs, VSIs…).

● Needs to have a basic set of functionality which is well understood by 
operators.
○ e.g., how protocols redistribute routes between each other.
○ Minimum viable set is critical - understanding operational requirements.

● Non-trivial to map to underlying vendor implementations consistently.
○ We have done work to map OC-NI to 4 different vendors’ CLI implementation.



It’s not about the “best” data model.
● OpenConfig tries to concentrate on operationally usable models.

○ Try and think in terms of how features are used rather than how they look on the wire 
or how they are specified.

● The other factor we optimise for is implementability.
○ Some duplication exists for compatibility reasons (more granular support/less granular 

support).
○ Some “mode” flags to support different implementations.
○ Balance mapping complexity across implementations.

● Don’t discover some issues until review/implementation time.
○ Iteration is required in the models - private and public engagement.
○ Incompatible with standardise then implement.



It’s not about the most complete data model.
● Implementation and review effort is leaf-by-leaf.

○ This is how implementors (vendors, internal operator code) generally engage with the 
models that we publish.

○ Obvious: the more leaves, the more review required, the more code to be written.

● Implementation code is for mapping configuration or state data, or to add  
internal instrumentation for telemetry.

● Observation: Biasing towards operationally used features is key.
○ Catalogue ‘feature-bundles’ allow operators/vendors to specify their unit of 

compliance.
○ Avoids an ocean-boiling exercise.



Versioning is more complex than revision.
● The YANG revision semantics don’t easily map to real world iteration.

○ There will be some backwards incompatible changes.
○ Revision gives zero information as to what the type of change is.
○ Seeing others (not just OC) use some alternate versioning.

● Versioning gets harder for combinations of models.
○ What works with what? What functionality can be supported with a particular set of 

models.

● OpenConfig approach:
○ Semantic versioning (How did this model change?) - openconfig-version
○ Model cross-products (What models work together?) - release-bundle.
○ Compliance units per operator/vendor (What is supported where?) - feature-bundle.



Constraining Language Feature Complexity.
● There are lots of degrees of freedom in YANG.

○ Some of the functions overlap - e.g., choice/case vs. when.

● Code generation has to consider how to map these into usable artifacts.
○ Unions of unions of unions…. 
○ Unions of multiple enumerations.
○ Defaults that apply to one of N different member types.
○ How to represent presence within a data structure.

● Possible to use all these features - but increases number of bugs in code 
generation, and effort for implementation.
○ Majority of new features are new YANG combinations of features.
○ Most bugs relate to untested combinations (testing all combinations is not tractable).



The approach to extensibility matters.
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OpenConfig & the IETF.
● Aim to continue to engage in discussions around modelling.

○ Not really clear where we should for this (rtgwg? netmod? rt-yang-arch-dt?)
○ Comments on implementation experience seem to be lacking in the IETF.

■ Bias towards running code?

● Aim to progress models that we have already published.
○ BGP and policy models are in the IETF today.

● Observe:
○ Conclusion to opstate. Solution that is decided on, and implementations.
○ Approach taken to implementability for models in the IETF.
○ Potential fixes for usability issues in future YANG versions (map? posix-regexp? 

leafref between config true and false?) 



Backup



Must consider implementation complexity.
● And this MUST be for both for equipment and NMS vendors.

● Example: Regular expressions - w3c standard is not widely 
used/supported amongst users.
○ Developer needs to understand a new regexp format.
○ Limited existing tools allow you to test against these regexps.

● Example: Lists with keys are not a common data structure.
○ Rather: dict, HashMap, Map.

● These kind of issues result in complexity of implementation - negatively 
impacts adoption of models.


