
Model-driven automation
Anees Shaikh (Google), Rob Shakir (Jive Communications)

 On behalf of

www.openconfig.net

http://www.openconfig.net

• Motivation
• what’s the value of model-based automation?

• Overview of the OpenConfig working group
• come work with us!

• OpenConfig in a real network management stack
• leveraging open source tools with OpenConfig

Goals for this talk ...

2

Network automation has come a long way...

3

per-device
automation
CLI scripts

expect/ssh

unstructured
text

NMS
CLI
engine

sshRPC
API

NMS

automation library

drivers, templates

ssh vendor API

NMS

automation framework

ssh
vendor
API

recipes,modules,...

NMS

3

....but there’s still work to do

4

● automation frameworks are great, but mostly just type CLI commands faster
○ fundamental issue of multiple incompatible interfaces for the same things remains

● significant amount of proprietary integration to write and maintain
○ true even if vendors provide the “drivers”, modules, recipes, playbooks, etc.

● introducing new platforms is considerable amount of new development work

● what about visibility and monitoring ?

○ SNMP still the state of the art -- despite scaling limitations, proprietary MIBs, legacy
implementations, rigid structure, poor support for discovery, ...

4

Model-based automation

5

● durable APIs for managing and monitoring the network

● management abstraction layer (insulate from lower level details)

● forward compatibility with new platforms and technologies

● establishes a contract between NMS and infrastructure

5

OpenConfig: user-defined APIs

● industry collaboration among network operators

● data models for configuration and operational state, code written in YANG

● organizational model: informal, structured like an open source project

● development priorities driven by operator requirements

● engagements with major equipment vendors to drive native implementations

● engagement with standards (IETF) and OSS (OSR - quagga, ODL, ONOS,
goBGP)

TeraStream
6

http://datatracker.ietf.org/doc/draft-ietf-netmod-rfc6020bis/
https://github.com/openconfig/public

OpenConfig’s progress
Published OpenConfig models
● BGP
● routing policy
● locally generated routes
● interfaces, IP, VLANs
● MPLS, RSVP / TE
● networking / forwarding instances,

VRFs

● RIB contents
● terminal optics
● streaming telemetry configuration
● top-level device structure
● system inventory / hardware

Models in development / review
● system management
● ACLs
● line optics (EDFAs and ROADMs)
● IS-IS

● QoS
● tunnels / encapsulation
● LLDP
● FIB / LFIB

7

OpenConfig and telemetry support on vendor boxes

● initial versions of streaming telemetry available in 2016
○ Cisco Streaming Telemetry (IOS-XR)
○ Juniper JUNOS Telemetry Interface
○ additional vendors in progress

● OpenConfig BGP+policy model configuration native support
○ Cisco IOS-XR
○ Juniper JUNOS
○ Arista EOS
○ additional vendors with implementations underway

● implementations in progress for interfaces, MPLS / TE models

● operational state models being delivered as part of streaming telemetry

8

We have (many, many) models...now what?

Models are the (relatively) easy part -- how do users consume them?

Option 1: use a commercial management stack (very few options)
● ISV-developed models, proprietary integrations with devices
● device support, vendor-neutrality is dependent on ISV

Option 2: build a toolchain and operational model around open source models
● engage with vendors on native support for open APIs and streaming

telemetry
● develop tooling for generating and validating configuration data

9

Example network management architecture…

Abstraction Layer

Collector

Application specific
metrics

Automated
Management Agent

Streamed statistics
and state in vendor

neutral format

Vendor neutral
management APIs to set

and validate
configuration

Abstracted services so that
external services do not need

to understand network config -
an “intent API”

Multi-vendor network

Abstraction – using OpenConfig and YANG

IP Transit

BGP Policy BGP
Session IP Interface

Routing
Policy

BGP Peer
Group BGP Peer L2

Interface
L1

Interface

Abstracted Service:
External ”application” provided by the

network – addressed by operators and
other infrastructure components.

Service Components:
Re-usable network design elements –

move network design from .docx -> .py

Config Primitives:
Vendor neutral blocks of configuration
which are combined to make services

Jive “Plumber” – using OpenConfig today!

Config
Store

Service API

Versioned
Storage

Message Queue

HTTP

Audit CiscoTranslate gRPC

Log

OAM

Flask-RESTful bindings around PyangBind models -
present REST API to update service models

Mapping modules – take service and translate into
components and config data instances.

API around PyangBind modules – serialised to JSON
and stored in git.

Multiple consumers:
Audit Log – write changes to audit store

CiscoTranslate – take OpenConfig and translate to
Cisco CLI via jinja2 or Python native

gRPC – apply configuration changes to gRPC
endpoints natively

OAM – take tasks related to services (e.g., ping)
triggered from YANG RPCs and run

Simple Example – how does this work?

Jive Peer:
• Remote IP
• AS
• IRR AS Set
• Peer Type
• Peer Name

OpenConfig BGP
• Name
• Speed
• Description
• Hold-time
• Flow-control
• Subinterface

• IP Address
• Mask

Service Handler
• Build: peer-group -> add_peer_group(peers-X-group)
• Map: as -> config/peer-as
• Map: build_description(peer-name, peer-type) ->

config/description
• Auto-populate: timers/config/keepalive-interval
• Auto-populate: timers/config/hold-time

Cisco Config
router bgp {{ bgp.global.as_ }}
 template peer-policy {{ peer_group_name }}
 timers {{ hold_time }} {{
keepalive_interval }}
 …
 exit
 address-family ipv4 unicast
 neighbor {{ peer_address }} activate

Apply JSON Directly
{
 “neighbors”: [
 { “neighbor”: … },
]
}

Done by manipulating PyangBind objects:
peer = openconfig.bgp.neighbors.neighbor.add(remote_ip)
peer.timers.config.hold_time = 90
peer.error_handling.config.treat_as_withdraw = True

Jinja2 templates, or Python mapping code to produce
text output

PyangBind serialise to relevant encoding (e.g., IETF JSON)

OpenConfig BGP
• config/peer-group
• config/peer-address
• timers/config/hold-time
• timers/config/keepalive-

interval
• error-handling/config/
 treat-as-withdraw

Telemetry – streaming API with common data model

Service API

HTTP

Collector

Time
Series

DB

Streamed
Updates

Plumber application – an external consumer can get
data about state of service as well as configuration –
without needing to understand the device data model

Leverage existing metrics distribution infrastructure
Kakfa – streaming API is a producer, apps are

consumers.
Data logged into existing timeseries database

(OpenTSDB, InfluxDB etc.)

Numerous options for collector – manages
subscriptions to devices for timeseries data that is

desired.
Cisco, Juniper, Arista all have open source collector

projects.

Open source tooling exists for OpenConfig today

Language Bindings

Data instance
serialisation

goyang

PyangBindXML (partial)
IETF JSON
Proprietary JSON

Backend Server for
Objects

PyNMS gRPC
Server

Config Application
Consumers

PyNMS gRPC
Server

github.com/openconfig/goyang

github.com/robshakir/pyangbind
pynms.io/pyangbind

pynms.io (beta!)
github.com/robshakir/pynms

Docker images available!

Telemetry Collectors

BigMuddy
Collector

Open NTI

github.com/cisco/bigmuddy-network-telemetry
-stacks

github.com/Juniper/open-nti

Arista github.com/arista
networks/goarista

https://github.com/openconfig/goyang
https://github.com/robshakir/pyangbind
http://pynms.io/pyangbind
http://pynms.io/
https://github.com/robshakir/pynms
https://github.com/cisco/bigmuddy-network-telemetry-stacks
https://github.com/cisco/bigmuddy-network-telemetry-stacks
https://github.com/Juniper/open-nti
https://github.com/aristanetworks/goarista
https://github.com/aristanetworks/goarista

Summary

Data Models

Good traction on modelling operationally
important functions.

Vendor implementations emerging.

More operators involved in this effort means
more vendor support, better models, and wider

coverage – consider contributing!

Tooling
A range of open source tooling exists, allowing

NMSes supporting OpenConfig to be put
together.

Consider trying them out, and contributing or
reporting issues where you come across them!

We believe we should target building modern management interfaces for the network, rather than
emulate humans with automation tools.

